Cheeze/lib/libtins/tests/src/tcp_ip_test.cpp
2024-02-21 14:52:47 +03:00

845 lines
34 KiB
C++

#include <tins/config.h>
#include <gtest/gtest.h>
#ifdef TINS_HAVE_TCPIP
#include <iostream>
#include <algorithm>
#include <string>
#include <limits>
#include <cassert>
#include <tins/tcp_ip/stream_follower.h>
#include <tins/tcp.h>
#include <tins/ip.h>
#include <tins/ip_address.h>
#include <tins/ipv6_address.h>
#include <tins/exceptions.h>
#include <tins/ethernetII.h>
#include <tins/rawpdu.h>
#include <tins/packet.h>
#include <tins/config.h>
#ifdef TINS_HAVE_ACK_TRACKER
#include <tins/tcp_ip/ack_tracker.h>
#endif // TINS_HAVE_ACK_TRACKER
using namespace std;
using namespace std::chrono;
using namespace Tins;
using namespace Tins::TCPIP;
class FlowTest : public testing::Test {
public:
struct order_element {
order_element(size_t payload_index, uint32_t payload_size)
: payload_index(payload_index),payload_size(payload_size) {
}
size_t payload_index;
uint32_t payload_size;
};
static const size_t num_packets = 20;
static EthernetII packets[], overlapped_packets1[],
overlapped_packets2[], overlapped_packets3[],
overlapped_packets4[], overlapped_packets5[];
static const string payload;
typedef vector<order_element> ordering_info_type;
void cumulative_flow_data_handler(Flow& flow);
void on_new_stream(Stream& stream);
void cumulative_stream_client_data_handler(Stream& stream);
void cumulative_stream_server_data_handler(Stream& stream);
void out_of_order_handler(Flow& session, uint32_t seq, Flow::payload_type payload);
void run_test(uint32_t initial_seq, const ordering_info_type& chunks,
const string& payload);
void run_test(uint32_t initial_seq, const ordering_info_type& chunks);
void run_tests(const ordering_info_type& chunks, const string& payload);
void run_tests(const ordering_info_type& chunks);
ordering_info_type split_payload(const string& payload, uint32_t chunk_size);
string merge_chunks(const vector<Flow::payload_type>& chunks);
vector<EthernetII> chunks_to_packets(uint32_t initial_seq,
const ordering_info_type& chunks,
const string& payload);
vector<EthernetII> three_way_handshake(uint32_t client_seq, uint32_t server_seq,
IPv4Address client_addr, uint16_t client_port,
IPv4Address server_addr, uint16_t server_port);
void set_endpoints(vector<EthernetII>& packets, IPv4Address src_addr,
uint16_t src_port, IPv4Address dst_addr,
uint16_t dst_port);
vector<Flow::payload_type> flow_payload_chunks;
vector<pair<uint32_t, Flow::payload_type> > flow_out_of_order_chunks;
vector<Flow::payload_type> stream_client_payload_chunks;
vector<Flow::payload_type> stream_server_payload_chunks;
};
const string FlowTest::payload = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. "
"Sed at aliquam arcu. Sed at iaculis magna. Nam ut dolor "
"eget velit mattis posuere ut non dui. Aliquam faucibus "
"erat pretium ligula tincidunt eget tristique justo placerat. "
"Phasellus turpis tellus, ornare ultricies egestas vitae, "
"mollis sed neque. Sed et libero in nunc pharetra auctor ut "
"a eros. Mauris quis faucibus nibh. \nLorem ipsum dolor sit "
"amet, consectetur adipiscing elit. Sed at aliquam arcu. "
"Sed at iaculis magna. Nam ut dolor eget velit mattis "
"posuere ut non dui. Aliquam faucibus erat pretium ligula "
"tincidunt eget tristique justo placerat. Phasellus turpis "
"tellus, ornare ultricies egestas vitae, mollis sed neque. "
"Sed et libero in nunc pharetra auctor ut a eros. Mauris "
"quis faucibus nibh. \n\n\nCurabitur sem erat, bibendum "
"quis condimentum ut, imperdiet at est. Duis sagittis rhoncus "
"felis at ultricies. In libero urna, dignissim eu elementum "
"quis, consectetur a neque. Praesent leo sem, cursus sed lobortis "
"sit amet, ornare ac augue. Mauris tristique semper ipsum at "
"consequat. Sed fringilla dolor ut lacus sagittis quis ultricies "
"leo vulputate. Maecenas dignissim imperdiet justo. Cras libero "
"odio, vehicula et adipiscing quis, luctus vel ante. \nAliquam "
"imperdiet est quis nunc malesuada eget convallis tellus "
"ullamcorper. Vivamus ullamcorper eros sit amet odio sollicitudin "
"rutrum. Donec pellentesque faucibus nulla, ut fringilla risus "
"aliquam eget. Sed et ante mi. Morbi a turpis et tellus dapibus "
"iaculis. Etiam faucibus tellus sed metus consequat rutrum. "
"Fusce sit amet nulla massa, tempus vulputate sem. Cras tincidunt "
"quam in libero rutrum interdum. Aliquam quam sapien, facilisis "
"at vestibulum et, venenatis id mauris. Morbi rutrum gravida "
"ultricies. \nAenean et justo ut libero euismod sollicitudin. "
"Nullam enim dui, iaculis vitae bibendum et, commodo in tellus. "
"Nullam eget purus mi, a ullamcorper lorem. Suspendisse potenti. "
"Duis ac justo ut leo euismod gravida sit amet at lectus. Lorem "
"ipsum dolor sit amet, consectetur adipiscing elit. Maecenas sed "
"arcu vitae nisi sollicitudin gravida. Nulla facilisis nibh turpis. "
"Maecenas quis imperdiet arcu. Sed sit amet nulla urna, at "
"vestibulum mauris. Suspendisse quis elit dui. Class aptent taciti "
"sociosqu ad litora torquent per conubia nostra, per inceptos "
"himenaeos. \n";
void FlowTest::cumulative_flow_data_handler(Flow& flow) {
flow_payload_chunks.push_back(flow.payload());
flow.payload().clear();
}
void FlowTest::on_new_stream(Stream& stream) {
using std::placeholders::_1;
stream.client_data_callback(bind(&FlowTest::cumulative_stream_client_data_handler,
this, _1));
stream.server_data_callback(bind(&FlowTest::cumulative_stream_server_data_handler,
this, _1));
}
void FlowTest::cumulative_stream_client_data_handler(Stream& stream) {
stream_client_payload_chunks.push_back(stream.client_flow().payload());
}
void FlowTest::cumulative_stream_server_data_handler(Stream& stream) {
stream_server_payload_chunks.push_back(stream.server_flow().payload());
}
void FlowTest::out_of_order_handler(Flow& /*session*/, uint32_t seq, Flow::payload_type payload) {
flow_out_of_order_chunks.push_back(make_pair(seq, move(payload)));
}
void FlowTest::run_test(uint32_t initial_seq, const ordering_info_type& chunks,
const string& payload) {
using std::placeholders::_1;
flow_payload_chunks.clear();
Flow flow(IPv4Address("1.2.3.4"), 22, initial_seq);
flow.data_callback(bind(&FlowTest::cumulative_flow_data_handler, this, _1));
vector<EthernetII> packets = chunks_to_packets(initial_seq, chunks, payload);
for (size_t i = 0; i < packets.size(); ++i) {
flow.process_packet(packets[i]);
}
string flow_payload = merge_chunks(flow_payload_chunks);
EXPECT_EQ(payload, string(flow_payload.begin(), flow_payload.end()));
EXPECT_EQ(0U, flow.total_buffered_bytes());
EXPECT_TRUE(flow.buffered_payload().empty());
}
void FlowTest::run_test(uint32_t initial_seq, const ordering_info_type& chunks) {
run_test(initial_seq, chunks, payload);
}
void FlowTest::run_tests(const ordering_info_type& chunks, const string& payload) {
run_test(0, chunks, payload);
run_test(20, chunks, payload);
run_test(numeric_limits<uint32_t>::max() / 2, chunks, payload);
run_test(numeric_limits<uint32_t>::max() - 2, chunks, payload);
run_test(numeric_limits<uint32_t>::max() - 5, chunks, payload);
run_test(numeric_limits<uint32_t>::max() - 10, chunks, payload);
run_test(numeric_limits<uint32_t>::max() - 34, chunks, payload);
run_test(numeric_limits<uint32_t>::max() - 31, chunks, payload);
}
void FlowTest::run_tests(const ordering_info_type& chunks) {
run_tests(chunks, payload);
}
FlowTest::ordering_info_type FlowTest::split_payload(const string& payload,
uint32_t chunk_size) {
ordering_info_type output;
uint32_t chunk_count = payload.size() / chunk_size;
for (uint32_t i = 0; i < chunk_count; ++i) {
output.push_back(order_element(i * chunk_size, chunk_size));
}
if (chunk_count * chunk_size < payload.size()) {
uint32_t index = chunk_count * chunk_size;
output.push_back(order_element(index, payload.size() - index));
}
return output;
}
string FlowTest::merge_chunks(const vector<Flow::payload_type>& chunks) {
string output;
for (size_t i = 0; i < chunks.size(); ++i) {
Flow::payload_type this_chunk = chunks[i];
output += string(this_chunk.begin(), this_chunk.end());
}
return output;
}
vector<EthernetII> FlowTest::chunks_to_packets(uint32_t initial_seq,
const ordering_info_type& chunks,
const string& payload) {
vector<EthernetII> output;
for (size_t i = 0; i < chunks.size(); ++i) {
const order_element& element = chunks[i];
assert(element.payload_index + element.payload_size <= payload.size());
TCP tcp;
RawPDU raw(payload.begin() + element.payload_index,
payload.begin() + element.payload_index + element.payload_size);
tcp.seq(initial_seq + element.payload_index);
output.push_back(EthernetII() / IP() / tcp / raw);
}
return output;
}
vector<EthernetII> FlowTest::three_way_handshake(uint32_t client_seq, uint32_t server_seq,
IPv4Address client_addr, uint16_t client_port,
IPv4Address server_addr, uint16_t server_port) {
vector<EthernetII> output;
output.push_back(EthernetII() / IP(server_addr, client_addr) / TCP(server_port, client_port));
output.push_back(EthernetII() / IP(client_addr, server_addr) / TCP(client_port, server_port));
output.push_back(EthernetII() / IP(server_addr, client_addr) / TCP(server_port, client_port));
output[0].rfind_pdu<TCP>().flags(TCP::SYN);
output[0].rfind_pdu<TCP>().seq(client_seq);
output[1].rfind_pdu<TCP>().flags(TCP::SYN | TCP::ACK);
output[1].rfind_pdu<TCP>().seq(server_seq);
output[1].rfind_pdu<TCP>().ack_seq(client_seq + 1);
output[2].rfind_pdu<TCP>().flags(TCP::ACK);
output[2].rfind_pdu<TCP>().seq(client_seq + 1);
output[2].rfind_pdu<TCP>().ack_seq(server_seq + 1);
return output;
}
void FlowTest::set_endpoints(vector<EthernetII>& packets, IPv4Address src_addr,
uint16_t src_port, IPv4Address dst_addr,
uint16_t dst_port) {
for (size_t i = 0; i < packets.size(); ++i) {
packets[i].rfind_pdu<IP>().src_addr(src_addr);
packets[i].rfind_pdu<IP>().dst_addr(dst_addr);
packets[i].rfind_pdu<TCP>().sport(src_port);
packets[i].rfind_pdu<TCP>().dport(dst_port);
}
}
TEST_F(FlowTest, ReassembleStreamPlain) {
ordering_info_type chunks = split_payload(payload, 5);
run_tests(chunks);
}
TEST_F(FlowTest, ReassembleStreamReordering) {
ordering_info_type chunks = split_payload(payload, 5);
// e.g. input [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
// after this it's [2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8]
for (size_t i = 0; i < chunks.size(); i += 4) {
if (i + 2 < chunks.size()) {
swap(chunks[i], chunks[i + 2]);
}
}
run_tests(chunks);
}
TEST_F(FlowTest, ReassembleStreamReversed) {
ordering_info_type chunks = split_payload(payload, 5);
reverse(chunks.begin(), chunks.end());
run_tests(chunks);
}
TEST_F(FlowTest, Overlapping) {
string payload = "Hello world. This is a payload";
ordering_info_type chunks;
// "Hello "
chunks.push_back(order_element(0, 6));
// "ello Wo"
chunks.push_back(order_element(1, 7));
// "lo World"
chunks.push_back(order_element(3, 8));
chunks.push_back(order_element(10, payload.size() - 10));
chunks.push_back(order_element(9, 1));
run_tests(chunks, payload);
reverse(chunks.begin(), chunks.end());
run_tests(chunks, payload);
swap(chunks[2], chunks[4]);
run_tests(chunks, payload);
}
TEST_F(FlowTest, IgnoreDataPackets) {
using std::placeholders::_1;
ordering_info_type chunks = split_payload(payload, 5);
Flow flow(IPv4Address("1.2.3.4"), 22, 0);
flow.data_callback(bind(&FlowTest::cumulative_flow_data_handler, this, _1));
flow.ignore_data_packets();
vector<EthernetII> packets = chunks_to_packets(0, chunks, payload);
for (size_t i = 0; i < packets.size(); ++i) {
flow.process_packet(packets[i]);
}
EXPECT_TRUE(flow_payload_chunks.empty());
}
TEST_F(FlowTest, OutOfOrderCallback) {
using namespace std::placeholders;
ordering_info_type chunks = split_payload(payload, 5);
Flow flow(IPv4Address("1.2.3.4"), 22, 0);
flow.out_of_order_callback(bind(&FlowTest::out_of_order_handler, this, _1, _2, _3));
vector<EthernetII> packets = chunks_to_packets(0, chunks, payload);
reverse(packets.begin(), packets.end());
// Copy, as Flow::process_packet takes ownership of the payload
vector<EthernetII> original_packets = packets;
for (size_t i = 0; i < packets.size(); ++i) {
flow.process_packet(packets[i]);
}
// All elements should be out of order except the first
// one (last one in reverse order)
ASSERT_EQ(original_packets.size() - 1, flow_out_of_order_chunks.size());
for (size_t i = 0; i < original_packets.size() - 1; ++i) {
// Compare sequence number
EXPECT_EQ(
original_packets[i].rfind_pdu<TCP>().seq(),
flow_out_of_order_chunks[i].first
);
// Compare payload
EXPECT_EQ(
original_packets[i].rfind_pdu<RawPDU>().payload(),
flow_out_of_order_chunks[i].second
);
}
}
// Stream follower tests
TEST_F(FlowTest, StreamFollower_ThreeWayHandshake) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
packets[0].src_addr("00:01:02:03:04:05");
packets[0].dst_addr("05:04:03:02:01:00");
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
Stream::timestamp_type ts(10000);
Stream::timestamp_type create_time = ts;
for (size_t i = 0; i < packets.size(); ++i) {
if (i != 0) {
ts += milliseconds(100);
}
Packet packet(packets[i], duration_cast<microseconds>(ts));
follower.process_packet(packet);
}
Stream& stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
EXPECT_EQ(Flow::ESTABLISHED, stream.client_flow().state());
EXPECT_EQ(Flow::SYN_SENT, stream.server_flow().state());
EXPECT_EQ(30U, stream.client_flow().sequence_number());
EXPECT_EQ(61U, stream.server_flow().sequence_number());
EXPECT_EQ(IPv4Address("4.3.2.1"), stream.client_flow().dst_addr_v4());
EXPECT_EQ(25, stream.client_flow().dport());
EXPECT_EQ(IPv4Address("1.2.3.4"), stream.server_flow().dst_addr_v4());
EXPECT_EQ(22, stream.server_flow().dport());
EXPECT_EQ(IPv4Address("1.2.3.4"), stream.client_addr_v4());
EXPECT_EQ(IPv4Address("4.3.2.1"), stream.server_addr_v4());
EXPECT_EQ(HWAddress<6>("00:01:02:03:04:05"), stream.client_hw_addr());
EXPECT_EQ(HWAddress<6>("05:04:03:02:01:00"), stream.server_hw_addr());
EXPECT_EQ(22, stream.client_port());
EXPECT_EQ(25, stream.server_port());
EXPECT_EQ(create_time, stream.create_time());
EXPECT_EQ(ts, stream.last_seen());
IP server_packet = IP("1.2.3.4", "4.3.2.1") / TCP(22, 25);
server_packet.rfind_pdu<TCP>().flags(TCP::ACK);
follower.process_packet(server_packet);
EXPECT_EQ(Flow::ESTABLISHED, stream.server_flow().state());
EXPECT_EQ(61U, stream.server_flow().sequence_number());
EXPECT_FALSE(stream.is_partial_stream());
}
TEST_F(FlowTest, StreamFollower_TCPOptions) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
// Client's mss is 1220
packets[0].rfind_pdu<TCP>().mss(1220);
// Server's mss is 1460
packets[1].rfind_pdu<TCP>().mss(1460);
// Server supports SACK
packets[1].rfind_pdu<TCP>().sack_permitted();
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
Stream& stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
EXPECT_EQ(1220, stream.client_flow().mss());
EXPECT_EQ(1460, stream.server_flow().mss());
EXPECT_FALSE(stream.client_flow().sack_permitted());
EXPECT_TRUE(stream.server_flow().sack_permitted());
}
TEST_F(FlowTest, StreamFollower_CleanupWorks) {
using std::placeholders::_1;
bool timed_out = false;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
follower.stream_termination_callback([&](Stream&, StreamFollower::TerminationReason reason) {
timed_out = (reason == StreamFollower::TIMEOUT);
});
packets[2].rfind_pdu<IP>().src_addr("6.6.6.6");
auto base_time = duration_cast<Stream::timestamp_type>(system_clock::now().time_since_epoch());
Packet packet1(packets[0], base_time);
Packet packet2(packets[1], base_time + seconds(50));
Packet packet3(packets[2], base_time + minutes(10));
follower.process_packet(packet1);
Stream& stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
EXPECT_EQ(base_time, stream.create_time());
follower.process_packet(packet2);
follower.process_packet(packet3);
// At this point, it should be cleaned up
EXPECT_THROW(
follower.find_stream(IPv4Address("1.2.3.4"), 22, IPv4Address("4.3.2.1"), 25),
stream_not_found
);
EXPECT_TRUE(timed_out);
}
TEST_F(FlowTest, StreamFollower_RSTClosesStream) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
Stream stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
IP server_packet = IP("1.2.3.4", "4.3.2.1") / TCP(22, 25);
server_packet.rfind_pdu<TCP>().flags(TCP::RST);
stream.process_packet(server_packet);
EXPECT_EQ(Flow::RST_SENT, stream.server_flow().state());
EXPECT_TRUE(stream.is_finished());
}
TEST_F(FlowTest, StreamFollower_FINClosesStream) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
Stream stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
IP server_packet = IP("1.2.3.4", "4.3.2.1") / TCP(22, 25);
server_packet.rfind_pdu<TCP>().flags(TCP::FIN | TCP::ACK);
stream.process_packet(server_packet);
EXPECT_EQ(Flow::FIN_SENT, stream.server_flow().state());
EXPECT_FALSE(stream.is_finished());
IP client_packet = IP("4.3.2.1", "1.2.3.4") / TCP(25, 22);
client_packet.rfind_pdu<TCP>().flags(TCP::FIN | TCP::ACK);
stream.process_packet(client_packet);
EXPECT_EQ(Flow::FIN_SENT, stream.client_flow().state());
EXPECT_TRUE(stream.is_finished());
}
TEST_F(FlowTest, StreamFollower_StreamIsRemovedWhenFinished) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
IP server_packet = IP("1.2.3.4", "4.3.2.1") / TCP(22, 25);
server_packet.rfind_pdu<TCP>().flags(TCP::RST);
follower.process_packet(server_packet);
// We shouldn't be able to find it
EXPECT_THROW(
follower.find_stream(IPv4Address("1.2.3.4"), 22, IPv4Address("4.3.2.1"), 25),
stream_not_found
);
}
TEST_F(FlowTest, StreamFollower_FollowStream) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
ordering_info_type chunks = split_payload(payload, 5);
vector<EthernetII> chunk_packets = chunks_to_packets(30 /*initial_seq*/, chunks, payload);
set_endpoints(chunk_packets, "1.2.3.4", 22, "4.3.2.1", 25);
packets.insert(packets.end(), chunk_packets.begin(), chunk_packets.end());
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
EXPECT_EQ(chunk_packets.size(), stream_client_payload_chunks.size());
EXPECT_EQ(payload, merge_chunks(stream_client_payload_chunks));
}
TEST_F(FlowTest, StreamFollower_AttachToStreams) {
using std::placeholders::_1;
ordering_info_type chunks = split_payload(payload, 5);
vector<EthernetII> packets = chunks_to_packets(30 /*initial_seq*/, chunks, payload);
set_endpoints(packets, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.follow_partial_streams(true);
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
EXPECT_EQ(packets.size(), stream_client_payload_chunks.size());
EXPECT_EQ(payload, merge_chunks(stream_client_payload_chunks));
Stream& stream = follower.find_stream(IPv4Address("1.2.3.4"), 22, IPv4Address("4.3.2.1"), 25);
EXPECT_TRUE(stream.is_partial_stream());
}
TEST_F(FlowTest, StreamFollower_AttachToStreams_PacketsInBothDirections) {
using std::placeholders::_1;
ordering_info_type client_chunks = split_payload(payload, 5);
ordering_info_type server_chunks = split_payload(payload, 5);
vector<EthernetII> client_packets = chunks_to_packets(30 /*initial_seq*/, client_chunks,
payload);
vector<EthernetII> server_packets = chunks_to_packets(42 /*initial_seq*/, server_chunks,
payload);
// Let's say the first packet acks the range before the first server packet
client_packets[0].rfind_pdu<TCP>().ack_seq(42);
set_endpoints(client_packets, "1.2.3.4", 22, "4.3.2.1", 25);
set_endpoints(server_packets, "4.3.2.1", 25, "1.2.3.4", 22);
StreamFollower follower;
follower.follow_partial_streams(true);
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < client_packets.size(); ++i) {
follower.process_packet(client_packets[i]);
}
for (size_t i = 0; i < server_packets.size(); ++i) {
follower.process_packet(server_packets[i]);
}
EXPECT_EQ(client_packets.size(), stream_client_payload_chunks.size());
EXPECT_EQ(server_packets.size(), stream_server_payload_chunks.size());
EXPECT_EQ(payload, merge_chunks(stream_client_payload_chunks));
EXPECT_EQ(payload, merge_chunks(stream_server_payload_chunks));
}
TEST_F(FlowTest, StreamFollower_AttachToStreams_SecondPacketLost) {
using std::placeholders::_1;
ordering_info_type chunks = split_payload(payload, 5);
vector<EthernetII> packets = chunks_to_packets(30 /*initial_seq*/, chunks, payload);
string trimmed_payload = payload;
// Erase the second packet
packets.erase(packets.begin() + 1);
// Erase the 5-10th bytes
trimmed_payload.erase(5, 5);
set_endpoints(packets, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.follow_partial_streams(true);
follower.new_stream_callback([&](Stream& stream) {
on_new_stream(stream);
stream.client_out_of_order_callback([](Stream& stream, uint32_t seq,
const Stream::payload_type&) {
stream.client_flow().advance_sequence(seq);
});
});
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
EXPECT_EQ(packets.size(), stream_client_payload_chunks.size());
EXPECT_EQ(trimmed_payload, merge_chunks(stream_client_payload_chunks));
}
TEST_F(FlowTest, StreamFollower_AttachToStreams_RecoveryMode) {
using std::placeholders::_1;
ordering_info_type chunks = split_payload(payload, 5);
vector<EthernetII> packets = chunks_to_packets(30 /*initial_seq*/, chunks, payload);
string trimmed_payload = payload;
// Erase the 15-20th and 5-10th bytes
trimmed_payload.erase(15, 5);
trimmed_payload.erase(5, 5);
// Erase the second packet
packets.erase(packets.begin() + 3);
packets.erase(packets.begin() + 1);
set_endpoints(packets, "1.2.3.4", 22, "4.3.2.1", 25);
StreamFollower follower;
follower.follow_partial_streams(true);
follower.new_stream_callback([&](Stream& stream) {
on_new_stream(stream);
stream.enable_recovery_mode(20 /*recovery window size*/);
});
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
EXPECT_EQ(packets.size(), stream_client_payload_chunks.size());
EXPECT_EQ(trimmed_payload, merge_chunks(stream_client_payload_chunks));
EXPECT_EQ(trimmed_payload, merge_chunks(stream_client_payload_chunks));
}
#ifdef TINS_HAVE_ACK_TRACKER
using namespace boost;
using namespace boost::icl;
class AckTrackerTest : public testing::Test {
public:
typedef AckedRange::interval_type interval_type;
private:
};
vector<uint32_t> make_sack() {
return vector<uint32_t>();
}
template <typename... SackEdges>
vector<uint32_t> make_sack(pair<uint32_t, uint32_t> head, SackEdges&&... tail) {
vector<uint32_t> output = make_sack(tail...);
output.push_back(head.first);
output.push_back(head.second);
return output;
}
TCP make_tcp_ack(uint32_t ack_number) {
TCP output;
output.ack_seq(ack_number);
return output;
}
template <typename... SackEdges>
TCP make_tcp_ack(uint32_t ack_number, SackEdges&&... rest) {
TCP output = make_tcp_ack(ack_number);
vector<uint32_t> sack = make_sack(rest...);
output.sack(sack);
return output;
}
// This section compares ranges using
//
// EXPECT_TRUE(r1 == r2)
//
// Since otherwise gtest fails to compile when trying to print an interval
// to a std::ostream
TEST_F(AckTrackerTest, AckedRange_1) {
AckedRange range(0, 100);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(interval_type::closed(0, 100) == range.next());
EXPECT_FALSE(range.has_next());
}
TEST_F(AckTrackerTest, AckedRange_2) {
AckedRange range(2, 3);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(interval_type::closed(2, 3) == range.next());
EXPECT_FALSE(range.has_next());
}
TEST_F(AckTrackerTest, AckedRange_3) {
AckedRange range(0, 0);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(interval_type::right_open(0, 1) == range.next());
EXPECT_FALSE(range.has_next());
}
TEST_F(AckTrackerTest, AckedRange_4) {
uint32_t maximum = numeric_limits<uint32_t>::max();
AckedRange range(maximum, maximum);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(interval_type::left_open(maximum - 1, maximum) == range.next());
EXPECT_FALSE(range.has_next());
}
TEST_F(AckTrackerTest, AckedRange_WrapAround) {
uint32_t first = numeric_limits<uint32_t>::max() - 5;
AckedRange range(first, 100);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(
interval_type::closed(first, numeric_limits<uint32_t>::max()) ==
range.next()
);
EXPECT_TRUE(range.has_next());
EXPECT_TRUE(interval_type::closed(0, 100) == range.next());
EXPECT_FALSE(range.has_next());
}
TEST_F(AckTrackerTest, AckingTcp1) {
AckTracker tracker(0, false);
EXPECT_EQ(0U, tracker.ack_number());
tracker.process_packet(make_tcp_ack(100));
EXPECT_EQ(100U, tracker.ack_number());
EXPECT_TRUE(tracker.is_segment_acked(0, 10));
EXPECT_TRUE(tracker.is_segment_acked(50, 10));
EXPECT_TRUE(tracker.is_segment_acked(99, 1));
EXPECT_FALSE(tracker.is_segment_acked(90, 20));
EXPECT_FALSE(tracker.is_segment_acked(99, 2));
tracker.process_packet(make_tcp_ack(50));
EXPECT_EQ(100U, tracker.ack_number());
tracker.process_packet(make_tcp_ack(150));
EXPECT_EQ(150U, tracker.ack_number());
tracker.process_packet(make_tcp_ack(200));
EXPECT_EQ(200U, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp2) {
uint32_t maximum = numeric_limits<uint32_t>::max();
AckTracker tracker(maximum - 10, false);
EXPECT_EQ(maximum - 10, tracker.ack_number());
tracker.process_packet(make_tcp_ack(maximum - 3));
EXPECT_EQ(maximum - 3, tracker.ack_number());
tracker.process_packet(make_tcp_ack(maximum));
EXPECT_EQ(maximum, tracker.ack_number());
tracker.process_packet(make_tcp_ack(5));
EXPECT_EQ(5U, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp3) {
uint32_t maximum = numeric_limits<uint32_t>::max();
AckTracker tracker(maximum - 10, false);
tracker.process_packet(make_tcp_ack(5));
EXPECT_EQ(5U, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp_Sack1) {
AckTracker tracker(0, true);
tracker.process_packet(make_tcp_ack(0, make_pair(2, 5), make_pair(9, 11)));
EXPECT_EQ(3U + 2U, tracker.acked_intervals().size());
EXPECT_TRUE(tracker.is_segment_acked(2, 3));
EXPECT_TRUE(tracker.is_segment_acked(9, 2));
EXPECT_FALSE(tracker.is_segment_acked(2, 9));
tracker.process_packet(make_tcp_ack(9));
EXPECT_EQ(1UL, tracker.acked_intervals().size());
tracker.process_packet(make_tcp_ack(15));
EXPECT_EQ(0UL, tracker.acked_intervals().size());
}
TEST_F(AckTrackerTest, AckingTcp_Sack2) {
uint32_t maximum = numeric_limits<uint32_t>::max();
AckTracker tracker(maximum - 10, true);
tracker.process_packet(make_tcp_ack(
maximum - 10,
make_pair(maximum - 3, maximum),
make_pair(0, 10)
));
EXPECT_EQ(3U + 10U, tracker.acked_intervals().size());
EXPECT_TRUE(tracker.is_segment_acked(maximum - 12, 2));
EXPECT_TRUE(tracker.is_segment_acked(maximum - 2, 1));
EXPECT_TRUE(tracker.is_segment_acked(2, 3));
EXPECT_FALSE(tracker.is_segment_acked(maximum - 10, 10));
EXPECT_EQ(maximum - 10, tracker.ack_number());
tracker.process_packet(make_tcp_ack(maximum - 2));
EXPECT_EQ(1U + 10U, tracker.acked_intervals().size());
EXPECT_EQ(maximum - 2, tracker.ack_number());
tracker.process_packet(make_tcp_ack(5));
EXPECT_EQ(4U, tracker.acked_intervals().size());
EXPECT_EQ(5U, tracker.ack_number());
tracker.process_packet(make_tcp_ack(15));
EXPECT_EQ(0U, tracker.acked_intervals().size());
EXPECT_EQ(15U, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp_Sack3) {
uint32_t maximum = numeric_limits<uint32_t>::max();
AckTracker tracker(maximum - 10, true);
tracker.process_packet(make_tcp_ack(
maximum - 10,
make_pair(maximum - 3, 5)
));
EXPECT_EQ(9U, tracker.acked_intervals().size());
EXPECT_EQ(maximum - 10, tracker.ack_number());
tracker.process_packet(make_tcp_ack(maximum));
EXPECT_EQ(5U, tracker.acked_intervals().size());
EXPECT_EQ(maximum, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp_SackOutOfOrder1) {
AckTracker tracker(0, true);
tracker.process_packet(make_tcp_ack(10));
tracker.process_packet(make_tcp_ack(0, make_pair(9, 12)));
EXPECT_EQ(0U, tracker.acked_intervals().size());
EXPECT_EQ(11U, tracker.ack_number());
}
TEST_F(AckTrackerTest, AckingTcp_SackOutOfOrder2) {
AckTracker tracker(0, true);
tracker.process_packet(make_tcp_ack(10));
tracker.process_packet(make_tcp_ack(0, make_pair(10, 12)));
EXPECT_EQ(0U, tracker.acked_intervals().size());
EXPECT_EQ(11U, tracker.ack_number());
}
TEST_F(FlowTest, AckNumbersAreCorrect) {
using std::placeholders::_1;
vector<EthernetII> packets = three_way_handshake(29, 60, "1.2.3.4", 22, "4.3.2.1", 25);
// Server's ACK number is 9898
packets[1].rfind_pdu<TCP>().ack_seq(9898);
// Client's ACK number is 1717
packets[2].rfind_pdu<TCP>().ack_seq(1717);
StreamFollower follower;
follower.new_stream_callback(bind(&FlowTest::on_new_stream, this, _1));
for (size_t i = 0; i < packets.size(); ++i) {
follower.process_packet(packets[i]);
}
Stream& stream = follower.find_stream(IPv4Address("1.2.3.4"), 22,
IPv4Address("4.3.2.1"), 25);
EXPECT_EQ(1717U, stream.client_flow().ack_tracker().ack_number());
EXPECT_EQ(9898U, stream.server_flow().ack_tracker().ack_number());
}
#endif // TINS_HAVE_ACK_TRACKER
#else
TEST(Foo, Dummy) {
}
#endif // TINS_HAVE_TCPIP