2024-02-21 14:52:47 +03:00

444 lines
16 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <cstring>
#ifndef _WIN32
#include <netinet/in.h>
#include <sys/socket.h>
#else
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <ws2tcpip.h>
#endif
#include <tins/ipv6.h>
#include <tins/constants.h>
#include <tins/packet_sender.h>
#include <tins/rawpdu.h>
#include <tins/exceptions.h>
#include <tins/pdu_allocator.h>
#include <tins/memory_helpers.h>
#include <tins/detail/pdu_helpers.h>
using std::make_pair;
using std::vector;
using Tins::Memory::InputMemoryStream;
using Tins::Memory::OutputMemoryStream;
namespace Tins {
PDU::metadata IPv6::extract_metadata(const uint8_t *buffer, uint32_t total_sz) {
if (TINS_UNLIKELY(total_sz < sizeof(ipv6_header))) {
throw malformed_packet();
}
InputMemoryStream stream(buffer, total_sz);
const ipv6_header* header = (const ipv6_header*)buffer;
uint32_t header_size = sizeof(ipv6_header);
uint8_t current_header = header->next_header;
stream.skip(sizeof(ipv6_header));
while (is_extension_header(current_header)) {
current_header = stream.read<uint8_t>();
const uint32_t ext_size = (static_cast<uint32_t>(stream.read<uint8_t>()) + 1) * 8;
const uint32_t payload_size = ext_size - sizeof(uint8_t) * 2;
header_size += ext_size;
stream.skip(payload_size);
}
return metadata(header_size, pdu_flag, PDU::UNKNOWN);
}
IPv6::hop_by_hop_header IPv6::hop_by_hop_header::from_extension_header(const ext_header& hdr) {
if (TINS_UNLIKELY(hdr.option() != HOP_BY_HOP)) {
throw invalid_ipv6_extension_header();
}
hop_by_hop_header header;
header.options = parse_header_options(hdr.data_ptr(), hdr.data_size());
return header;
}
IPv6::destination_routing_header IPv6::destination_routing_header::from_extension_header(const ext_header& hdr) {
if (TINS_UNLIKELY(hdr.option() != DESTINATION_ROUTING_OPTIONS)) {
throw invalid_ipv6_extension_header();
}
destination_routing_header header;
header.options = parse_header_options(hdr.data_ptr(), hdr.data_size());
return header;
}
IPv6::routing_header IPv6::routing_header::from_extension_header(const ext_header& hdr) {
if (TINS_UNLIKELY(hdr.option() != ROUTING)) {
throw invalid_ipv6_extension_header();
}
Memory::InputMemoryStream stream(hdr.data_ptr(), hdr.data_size());
routing_header header;
header.routing_type = stream.read<uint8_t>();
header.segments_left = stream.read<uint8_t>();
header.data.assign(stream.pointer(), stream.pointer() + stream.size());
return header;
}
IPv6::fragment_header IPv6::fragment_header::from_extension_header(const ext_header& hdr) {
if (TINS_UNLIKELY(hdr.option() != FRAGMENT)) {
throw invalid_ipv6_extension_header();
}
Memory::InputMemoryStream stream(hdr.data_ptr(), hdr.data_size());
fragment_header header;
uint16_t field = stream.read_be<uint16_t>();
header.fragment_offset = field >> 3;
header.more_fragments = field & 1;
header.identification = stream.read_be<uint32_t>();
return header;
}
IPv6::IPv6(address_type ip_dst, address_type ip_src, PDU* /*child*/)
: header_(), next_header_() {
version(6);
dst_addr(ip_dst);
src_addr(ip_src);
}
IPv6::IPv6(const uint8_t* buffer, uint32_t total_sz) {
InputMemoryStream stream(buffer, total_sz);
stream.read(header_);
uint8_t current_header = header_.next_header;
uint32_t actual_payload_length = payload_length();
bool is_payload_fragmented = false;
while (stream) {
if (is_extension_header(current_header) && current_header != NO_NEXT_HEADER) {
if (current_header == FRAGMENT) {
is_payload_fragmented = true;
}
const uint8_t ext_type = stream.read<uint8_t>();
// every ext header is at least 8 bytes long
// minus one, from the next_header field.
const uint32_t ext_size = (static_cast<uint32_t>(stream.read<uint8_t>()) + 1) * 8;
const uint32_t payload_size = ext_size - sizeof(uint8_t) * 2;
if (!stream.can_read(payload_size)) {
throw malformed_packet();
}
// Add a header using the current header type (e.g. what we saw as the next
// header type in the previous)
add_header(ext_header(current_header, payload_size, stream.pointer()));
if (actual_payload_length == 0u && current_header == HOP_BY_HOP) {
// could be a jumbogram, look for Jumbo Payload Option
InputMemoryStream options(stream.pointer(), payload_size);
while (options) {
const uint8_t opt_type = options.read<uint8_t>();
if (opt_type == PAD_1) {
continue;
}
const uint8_t opt_size = options.read<uint8_t>();
if (opt_type == JUMBO_PAYLOAD) {
if (opt_size != 4) {
throw malformed_packet();
}
actual_payload_length = stream.read_be<uint32_t>();
break;
}
options.skip(opt_size);
}
}
current_header = ext_type;
actual_payload_length -= ext_size;
stream.skip(payload_size);
}
else {
if (!stream.can_read(actual_payload_length)) {
throw malformed_packet();
}
if (is_payload_fragmented) {
inner_pdu(new Tins::RawPDU(stream.pointer(), actual_payload_length));
}
else {
inner_pdu(
Internals::pdu_from_flag(
static_cast<Constants::IP::e>(current_header),
stream.pointer(),
actual_payload_length,
false
)
);
if (!inner_pdu()) {
inner_pdu(
Internals::allocate<IPv6>(
current_header,
stream.pointer(),
actual_payload_length
)
);
if (!inner_pdu()) {
inner_pdu(new Tins::RawPDU(stream.pointer(), actual_payload_length));
}
}
}
// We got to an actual PDU, we're done
break;
}
}
next_header_ = current_header;
}
bool IPv6::is_extension_header(uint8_t header_id) {
return header_id == HOP_BY_HOP || header_id == DESTINATION_ROUTING_OPTIONS
|| header_id == ROUTING || header_id == FRAGMENT || header_id == AUTHENTICATION
|| header_id == DESTINATION_OPTIONS || header_id == MOBILITY
|| header_id == NO_NEXT_HEADER;
}
uint32_t IPv6::get_padding_size(const ext_header& header) {
const uint32_t padding = (header.data_size() + sizeof(uint8_t) * 2) % 8;
return padding == 0 ? 0 : (8 - padding);
}
vector<IPv6::header_option_type> IPv6::parse_header_options(const uint8_t* data, size_t size) {
Memory::InputMemoryStream stream(data, size);
vector<header_option_type> options;
while (stream.size() > 0) {
try {
uint8_t option = stream.read<uint8_t>();
if (option == PAD_1) {
continue;
}
uint8_t size = stream.read<uint8_t>();
if (size > stream.size()) {
throw invalid_ipv6_extension_header();
}
if (option != PAD_N) {
options.push_back(make_pair(option, vector<uint8_t>(stream.pointer(),
stream.pointer() +
size)));
}
stream.skip(size);
} catch (const malformed_packet&) {
throw invalid_ipv6_extension_header();
}
}
return options;
}
void IPv6::version(small_uint<4> new_version) {
header_.version = new_version;
}
void IPv6::traffic_class(uint8_t new_traffic_class) {
#if TINS_IS_LITTLE_ENDIAN
header_.traffic_class = (new_traffic_class >> 4) & 0xf;
header_.flow_label[0] = (header_.flow_label[0] & 0x0f) | ((new_traffic_class << 4) & 0xf0);
#else
header_.traffic_class = new_traffic_class;
#endif
}
void IPv6::flow_label(small_uint<20> new_flow_label) {
#if TINS_IS_LITTLE_ENDIAN
uint32_t value = Endian::host_to_be<uint32_t>(new_flow_label);
header_.flow_label[2] = (value >> 24) & 0xff;
header_.flow_label[1] = (value >> 16) & 0xff;
header_.flow_label[0] = ((value >> 8) & 0x0f) | (header_.flow_label[0] & 0xf0);
#else
header_.flow_label = new_flow_label;
#endif
}
void IPv6::payload_length(uint16_t new_payload_length) {
header_.payload_length = Endian::host_to_be(new_payload_length);
}
void IPv6::next_header(uint8_t new_next_header) {
next_header_ = header_.next_header = new_next_header;
}
void IPv6::hop_limit(uint8_t new_hop_limit) {
header_.hop_limit = new_hop_limit;
}
void IPv6::src_addr(const address_type& new_src_addr) {
new_src_addr.copy(header_.src_addr);
}
void IPv6::dst_addr(const address_type& new_dst_addr) {
new_dst_addr.copy(header_.dst_addr);
}
uint32_t IPv6::header_size() const {
return sizeof(header_) + calculate_headers_size();
}
bool IPv6::matches_response(const uint8_t* ptr, uint32_t total_sz) const {
if (total_sz < sizeof(ipv6_header)) {
return false;
}
const ipv6_header* hdr_ptr = (const ipv6_header*)ptr;
// checks for ff02 multicast
if (src_addr() == hdr_ptr->dst_addr &&
(dst_addr() == hdr_ptr->src_addr || (header_.dst_addr[0] == 0xff && header_.dst_addr[1] == 0x02))) {
// is this OK? there's no inner pdu, simple dst/src addr match should suffice
if (!inner_pdu()) {
return true;
}
ptr += sizeof(ipv6_header);
total_sz -= sizeof(ipv6_header);
uint8_t current = hdr_ptr->next_header;
// 8 == minimum header size
while (total_sz > 8 && is_extension_header(current)) {
if (static_cast<uint32_t>(ptr[1] + 1) * 8 > total_sz) {
return false;
}
current = ptr[0];
total_sz -= (ptr[1] + 1) * 8;
ptr += (ptr[1] + 1) * 8;
}
if (!is_extension_header(current)) {
return inner_pdu()->matches_response(ptr, total_sz);
}
}
return false;
}
void IPv6::write_serialization(uint8_t* buffer, uint32_t total_sz) {
OutputMemoryStream stream(buffer, total_sz);
vector<uint8_t> header_types;
// Iterate the headers and store their current values. At the same time, update header X
// so it has the option type of header X + 1
for (size_t i = 0; i < ext_headers_.size(); ++i) {
const uint8_t option = ext_headers_[i].option();
header_types.push_back(option);
if (i > 0) {
ext_headers_[i - 1].option(option);
}
}
// If we have at least one, then update our IPv6 header's next header type
if (!header_types.empty()) {
header_.next_header = header_types[0];
}
if (inner_pdu()) {
uint8_t new_flag = Internals::pdu_flag_to_ip_type(inner_pdu()->pdu_type());
if (new_flag == 0xff && Internals::pdu_type_registered<IPv6>(inner_pdu()->pdu_type())) {
new_flag = static_cast<Constants::IP::e>(
Internals::pdu_type_to_id<IPv6>(inner_pdu()->pdu_type())
);
}
// If we managed to find the next flag, then set it. Otherwise, fall back to the
// original (or user set) next header
if (new_flag != 0xff) {
set_last_next_header(new_flag);
}
else {
set_last_next_header(next_header_);
}
}
else {
set_last_next_header(0);
}
payload_length(static_cast<uint16_t>(total_sz - sizeof(header_)));
stream.write(header_);
for (headers_type::const_iterator it = ext_headers_.begin(); it != ext_headers_.end(); ++it) {
write_header(*it, stream);
}
// Restore our original header types
for (size_t i = 0; i < ext_headers_.size(); ++i) {
ext_headers_[i].option(header_types[i]);
}
}
#ifndef BSD
void IPv6::send(PacketSender& sender, const NetworkInterface& interface) {
sockaddr_in6 link_addr;
const PacketSender::SocketType type = PacketSender::IPV6_SOCKET;
link_addr.sin6_family = AF_INET6;
link_addr.sin6_port = 0;
// Required to set sin6_scope_id to interface index as stated in RFC2553.
// https://datatracker.ietf.org/doc/html/rfc2553#section-3.3
if (IPv6Address(header_.dst_addr).is_local_unicast()) {
link_addr.sin6_scope_id = interface.id();
}
memcpy((uint8_t*)&link_addr.sin6_addr, header_.dst_addr, address_type::address_size);
sender.send_l3(*this, (struct sockaddr*)&link_addr, sizeof(link_addr), type);
}
PDU* IPv6::recv_response(PacketSender& sender, const NetworkInterface &) {
PacketSender::SocketType type = PacketSender::IPV6_SOCKET;
if (inner_pdu() && inner_pdu()->pdu_type() == PDU::ICMPv6) {
type = PacketSender::ICMPV6_SOCKET;
}
return sender.recv_l3(*this, 0, sizeof(sockaddr_in6), type);
}
#endif
void IPv6::add_ext_header(const ext_header& header) {
add_header(header);
}
void IPv6::add_header(const ext_header& header) {
ext_headers_.push_back(header);
}
const IPv6::ext_header* IPv6::search_header(ExtensionHeader id) const {
headers_type::const_iterator it = ext_headers_.begin();
while (it != ext_headers_.end()) {
if (it->option() == id) {
return &*it;
}
++it;
}
return 0;
}
void IPv6::set_last_next_header(uint8_t value) {
if (ext_headers_.empty()) {
header_.next_header = value;
}
else {
ext_headers_.back().option(value);
}
}
uint32_t IPv6::calculate_headers_size() const {
typedef headers_type::const_iterator const_iterator;
uint32_t output = 0;
for (const_iterator iter = ext_headers_.begin(); iter != ext_headers_.end(); ++iter) {
output += static_cast<uint32_t>(iter->data_size() + sizeof(uint8_t) * 2);
output += get_padding_size(*iter);
}
return output;
}
void IPv6::write_header(const ext_header& header, OutputMemoryStream& stream) {
const uint8_t length = header.length_field() / 8;
stream.write(header.option());
stream.write(length);
stream.write(header.data_ptr(), header.data_size());
// Append padding
stream.fill(get_padding_size(header), 0);
}
} // Tins