2024-02-21 14:52:47 +03:00

542 lines
17 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <cstring>
#ifndef _WIN32
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#else
#include <winsock2.h>
#endif
#include <tins/ip.h>
#include <tins/rawpdu.h>
#include <tins/packet_sender.h>
#include <tins/constants.h>
#include <tins/network_interface.h>
#include <tins/exceptions.h>
#include <tins/pdu_allocator.h>
#include <tins/memory_helpers.h>
#include <tins/utils/checksum_utils.h>
#include <tins/detail/pdu_helpers.h>
#include <tins/pdu_allocator.h>
using std::memcmp;
using std::vector;
using Tins::Memory::InputMemoryStream;
using Tins::Memory::OutputMemoryStream;
namespace Tins {
const uint8_t IP::DEFAULT_TTL = 128;
PDU::metadata IP::extract_metadata(const uint8_t *buffer, uint32_t total_sz) {
if (TINS_UNLIKELY(total_sz < sizeof(ip_header))) {
throw malformed_packet();
}
const ip_header* header = (const ip_header*)buffer;
PDUType next_type = Internals::ip_type_to_pdu_flag(
static_cast<Constants::IP::e>(header->protocol));
return metadata(header->ihl * 4, pdu_flag, next_type);
}
IP::IP(address_type ip_dst, address_type ip_src) {
init_ip_fields();
this->dst_addr(ip_dst);
this->src_addr(ip_src);
}
IP::IP(const uint8_t* buffer, uint32_t total_sz) {
InputMemoryStream stream(buffer, total_sz);
stream.read(header_);
// Make sure we have enough size for options and not less than we should
if (TINS_UNLIKELY(head_len() * sizeof(uint32_t) > total_sz ||
head_len() * sizeof(uint32_t) < sizeof(header_))) {
throw malformed_packet();
}
const uint8_t* options_end = buffer + head_len() * sizeof(uint32_t);
// While the end of the options is not reached read an option
while (stream.pointer() < options_end) {
option_identifier opt_type = (option_identifier)stream.read<uint8_t>();
if (opt_type.number > NOOP) {
// Multibyte options with length as second byte
const uint32_t option_size = stream.read<uint8_t>();
if (TINS_UNLIKELY(option_size < (sizeof(uint8_t) << 1))) {
throw malformed_packet();
}
// The data size is the option size - the identifier and size fields
const uint32_t data_size = option_size - (sizeof(uint8_t) << 1);
if (data_size > 0) {
if (stream.pointer() + data_size > options_end) {
throw malformed_packet();
}
options_.push_back(
option(opt_type, stream.pointer(), stream.pointer() + data_size)
);
stream.skip(data_size);
}
else {
options_.push_back(option(opt_type));
}
}
else if (opt_type == END) {
// If the end option found, we're done
if (TINS_UNLIKELY(stream.pointer() != options_end)) {
// Make sure we found the END option at the end of the options list
throw malformed_packet();
}
break;
}
else {
options_.push_back(option(opt_type));
}
}
if (stream) {
// Don't avoid consuming more than we should if tot_len is 0,
// since this is the case when using TCP segmentation offload
if (tot_len() != 0) {
const uint32_t advertised_length = (uint32_t)tot_len() - head_len() * sizeof(uint32_t);
const uint32_t stream_size = static_cast<uint32_t>(stream.size());
total_sz = (stream_size < advertised_length) ? stream_size : advertised_length;
}
else {
total_sz = stream.size();
}
// Don't try to decode it if it's fragmented
if (!is_fragmented()) {
inner_pdu(
Internals::pdu_from_flag(
static_cast<Constants::IP::e>(header_.protocol),
stream.pointer(),
total_sz,
false
)
);
if (!inner_pdu()) {
inner_pdu(
Internals::allocate<IP>(
header_.protocol,
stream.pointer(),
total_sz
)
);
if (!inner_pdu()) {
inner_pdu(new RawPDU(stream.pointer(), total_sz));
}
}
}
else {
// It's fragmented, just use RawPDU
inner_pdu(new RawPDU(stream.pointer(), total_sz));
}
}
}
void IP::init_ip_fields() {
memset(&header_, 0, sizeof(header_));
header_.version = 4;
ttl(DEFAULT_TTL);
id(1);
}
bool IP::is_fragmented() const {
return (flags() & IP::MORE_FRAGMENTS) != 0 || fragment_offset() != 0;
}
// Setters
void IP::tos(uint8_t new_tos) {
header_.tos = new_tos;
}
void IP::tot_len(uint16_t new_tot_len) {
header_.tot_len = Endian::host_to_be(new_tot_len);
}
void IP::id(uint16_t new_id) {
header_.id = Endian::host_to_be(new_id);
}
void IP::frag_off(uint16_t new_frag_off) {
header_.frag_off = Endian::host_to_be(new_frag_off);
}
void IP::fragment_offset(small_uint<13> new_frag_off) {
uint16_t value = (Endian::be_to_host(header_.frag_off) & 0xe000) | new_frag_off;
header_.frag_off = Endian::host_to_be(value);
}
void IP::flags(Flags new_flags) {
uint16_t value = (Endian::be_to_host(header_.frag_off) & 0x1fff) | (new_flags << 13);
header_.frag_off = Endian::host_to_be(value);
}
void IP::ttl(uint8_t new_ttl) {
header_.ttl = new_ttl;
}
void IP::protocol(uint8_t new_protocol) {
header_.protocol = new_protocol;
}
void IP::checksum(uint16_t new_check) {
header_.check = Endian::host_to_be(new_check);
}
void IP::src_addr(address_type ip) {
header_.saddr = ip;
}
void IP::dst_addr(address_type ip) {
header_.daddr = ip;
}
void IP::head_len(small_uint<4> new_head_len) {
header_.ihl = new_head_len;
}
void IP::version(small_uint<4> ver) {
header_.version = ver;
}
void IP::eol() {
add_option(option_identifier(IP::END, IP::CONTROL, 0));
}
void IP::noop() {
add_option(option_identifier(IP::NOOP, IP::CONTROL, 0));
}
void IP::security(const security_type& data) {
uint8_t array[9];
OutputMemoryStream stream(array, sizeof(array));
uint32_t value = data.transmission_control;
stream.write_be(data.security);
stream.write_be(data.compartments);
stream.write_be(data.handling_restrictions);
stream.write<uint8_t>((value >> 16) & 0xff);
stream.write<uint8_t>((value >> 8) & 0xff);
stream.write<uint8_t>(value & 0xff);
add_option(
option(
130,
sizeof(array),
array
)
);
}
void IP::stream_identifier(uint16_t stream_id) {
stream_id = Endian::host_to_be(stream_id);
add_option(
option(
136,
sizeof(uint16_t),
(const uint8_t*)&stream_id
)
);
}
void IP::add_route_option(option_identifier id, const generic_route_option_type& data) {
vector<uint8_t> opt_data(1 + sizeof(uint32_t) * data.routes.size());
opt_data[0] = data.pointer;
for (size_t i(0); i < data.routes.size(); ++i) {
uint32_t ip = data.routes[i];
#if TINS_IS_BIG_ENDIAN
ip = Endian::change_endian(ip);
#endif
opt_data[1 + i * 4] = ip & 0xff;
opt_data[1 + i * 4 + 1] = (ip >> 8) & 0xff;
opt_data[1 + i * 4 + 2] = (ip >> 16) & 0xff;
opt_data[1 + i * 4 + 3] = (ip >> 24) & 0xff;
}
add_option(
option(
id,
opt_data.size(),
&opt_data[0]
)
);
}
IP::generic_route_option_type IP::search_route_option(option_identifier id) const {
const option* opt = search_option(id);
if (!opt) {
throw option_not_found();
}
return opt->to<generic_route_option_type>();
}
IP::security_type IP::security() const {
const option* opt = search_option(130);
if (!opt) {
throw option_not_found();
}
return opt->to<security_type>();
}
uint16_t IP::stream_identifier() const {
const option* opt = search_option(136);
if (!opt) {
throw option_not_found();
}
return opt->to<uint16_t>();
}
void IP::add_option(const option& opt) {
options_.push_back(opt);
}
uint32_t IP::calculate_options_size() const {
uint32_t options_size = 0;
for (options_type::const_iterator iter = options_.begin(); iter != options_.end(); ++iter) {
options_size += sizeof(uint8_t);
const option_identifier option_id = iter->option();
// Only add length field and data size for non [NOOP, EOL] options
if (option_id.op_class != CONTROL || option_id.number > NOOP) {
options_size += sizeof(uint8_t) + iter->data_size();
}
}
return options_size;
}
uint32_t IP::pad_options_size(uint32_t size) const {
uint8_t padding = size % 4;
return padding ? (size - padding + 4) : size;
}
bool IP::remove_option(option_identifier id) {
options_type::iterator iter = search_option_iterator(id);
if (iter == options_.end()) {
return false;
}
options_.erase(iter);
return true;
}
const IP::option* IP::search_option(option_identifier id) const {
options_type::const_iterator iter = search_option_iterator(id);
return (iter != options_.end()) ? &*iter : 0;
}
IP::options_type::const_iterator IP::search_option_iterator(option_identifier id) const {
return Internals::find_option_const<option>(options_, id);
}
IP::options_type::iterator IP::search_option_iterator(option_identifier id) {
return Internals::find_option<option>(options_, id);
}
void IP::write_option(const option& opt, OutputMemoryStream& stream) {
stream.write(opt.option());
// Check what we wrote. We'll do this for any option != [END, NOOP]
if (*(stream.pointer() - 1) > NOOP) {
uint8_t length = opt.length_field();
if (opt.data_size() == opt.length_field()) {
length += 2;
}
stream.write(length);
stream.write(opt.data_ptr(), opt.data_size());
}
}
// Virtual method overriding
uint32_t IP::header_size() const {
return sizeof(header_) + pad_options_size(calculate_options_size());
}
PacketSender::SocketType pdu_type_to_sender_type(PDU::PDUType type) {
switch(type) {
case PDU::TCP:
return PacketSender::IP_TCP_SOCKET;
case PDU::UDP:
return PacketSender::IP_UDP_SOCKET;
case PDU::ICMP:
return PacketSender::ICMP_SOCKET;
default:
return PacketSender::IP_RAW_SOCKET;
}
}
void IP::send(PacketSender& sender, const NetworkInterface &) {
sockaddr_in link_addr;
PacketSender::SocketType type = PacketSender::IP_RAW_SOCKET;
link_addr.sin_family = AF_INET;
link_addr.sin_port = 0;
link_addr.sin_addr.s_addr = header_.daddr;
if (inner_pdu()) {
type = pdu_type_to_sender_type(inner_pdu()->pdu_type());
}
sender.send_l3(*this, (struct sockaddr*)&link_addr, sizeof(link_addr), type);
}
PDU* IP::recv_response(PacketSender& sender, const NetworkInterface &) {
sockaddr_in link_addr;
PacketSender::SocketType type = PacketSender::IP_RAW_SOCKET;
memset(&link_addr, 0, sizeof(link_addr));
if (inner_pdu()) {
type = pdu_type_to_sender_type(inner_pdu()->pdu_type());
}
return sender.recv_l3(*this, 0, sizeof(link_addr), type);
}
void IP::prepare_for_serialize() {
if (!parent_pdu()&& header_.saddr == 0) {
NetworkInterface iface(dst_addr());
src_addr(iface.addresses().ip_addr);
}
}
void IP::write_serialization(uint8_t* buffer, uint32_t total_sz) {
OutputMemoryStream stream(buffer, total_sz);
checksum(0);
if (inner_pdu()) {
uint32_t new_flag = Internals::pdu_flag_to_ip_type(inner_pdu()->pdu_type());
if (new_flag == 0xff && Internals::pdu_type_registered<IP>(inner_pdu()->pdu_type())) {
new_flag = static_cast<Constants::IP::e>(
Internals::pdu_type_to_id<IP>(inner_pdu()->pdu_type())
);
}
if (new_flag != 0xff) {
protocol(new_flag);
}
}
else {
protocol(0);
}
uint16_t original_frag_off = header_.frag_off;
#if __FreeBSD__ || defined(__FreeBSD_kernel__) || __APPLE__
if (!parent_pdu()) {
total_sz = Endian::host_to_be<uint16_t>(total_sz);
header_.frag_off = Endian::be_to_host(header_.frag_off);
}
#endif
tot_len(total_sz);
head_len(static_cast<uint8_t>(header_size() / sizeof(uint32_t)));
stream.write(header_);
// Restore the fragment offset field in case we flipped it
header_.frag_off = original_frag_off;
for (options_type::const_iterator it = options_.begin(); it != options_.end(); ++it) {
write_option(*it, stream);
}
const uint32_t options_size = calculate_options_size();
const uint32_t padded_options_size = pad_options_size(options_size);
// Add option padding
stream.fill(padded_options_size - options_size, 0);
uint32_t check = Utils::do_checksum(buffer, stream.pointer());
while (check >> 16) {
check = (check & 0xffff) + (check >> 16);
}
checksum(~check);
((ip_header*)buffer)->check = header_.check;
}
bool IP::matches_response(const uint8_t* ptr, uint32_t total_sz) const {
if (total_sz < sizeof(header_)) {
return false;
}
const ip_header* ip_ptr = (const ip_header*)ptr;
// dest unreachable?
if (ip_ptr->protocol == Constants::IP::PROTO_ICMP) {
const uint8_t* pkt_ptr = ptr + sizeof(ip_header);
uint32_t pkt_sz = total_sz - sizeof(ip_header);
// It's an ICMP dest unreachable
if (pkt_sz > 4 && pkt_ptr[0] == 3) {
pkt_ptr += 4;
pkt_sz -= 4;
// If our IP header is in the ICMP payload, then it's the same packet.
// This keeps in mind checksum and IP identifier, so I guess it's enough.
if (pkt_sz >= sizeof(header_) && memcmp(&header_, pkt_ptr, sizeof(ip_header))) {
return true;
}
}
}
// checks for broadcast addr
if ((header_.saddr == ip_ptr->daddr &&
(header_.daddr == ip_ptr->saddr || dst_addr().is_broadcast())) ||
(dst_addr().is_broadcast() && header_.saddr == 0)) {
uint32_t sz = (header_size() < total_sz) ? header_size() : total_sz;
return inner_pdu() ? inner_pdu()->matches_response(ptr + sz, total_sz - sz) : true;
}
return false;
}
// Option static constructors from options
IP::security_type IP::security_type::from_option(const option& opt) {
if (opt.data_size() != 9) {
throw malformed_option();
}
security_type output;
InputMemoryStream stream(opt.data_ptr(), opt.data_size());
output.security = stream.read_be<uint16_t>();
output.compartments = stream.read_be<uint16_t>();
output.handling_restrictions = stream.read_be<uint16_t>();
uint32_t tcc = stream.read<uint8_t>();
tcc = (tcc << 8) | stream.read<uint8_t>();
tcc = (tcc << 8) | stream.read<uint8_t>();
output.transmission_control = tcc;
return output;
}
IP::generic_route_option_type IP::generic_route_option_type::from_option(const option& opt) {
if (opt.data_size() < 1 + sizeof(uint32_t) || ((opt.data_size() - 1) % sizeof(uint32_t)) != 0) {
throw malformed_option();
}
generic_route_option_type output;
output.pointer = *opt.data_ptr();
const uint8_t* route = opt.data_ptr() + 1;
const uint8_t* end = route + opt.data_size() - 1;
uint32_t uint32_t_buffer;
while (route < end) {
memcpy(&uint32_t_buffer, route, sizeof(uint32_t));
output.routes.push_back(address_type(uint32_t_buffer));
route += sizeof(uint32_t);
}
return output;
}
} // Tins